Escalation of Care in CS When and How?

Adnan Khalif, MD FACC FSCAI

Interventional and Critical Care Cardiology

Co-Director, Cardiac Intensive Care Unit

Associate Program Director, Interventional Cardiology Fellowship

Adnan.Khalif@ahn.org

Disclosures

• Speakers Bureau/Honoraria: Inari Medical, Inc

Objectives

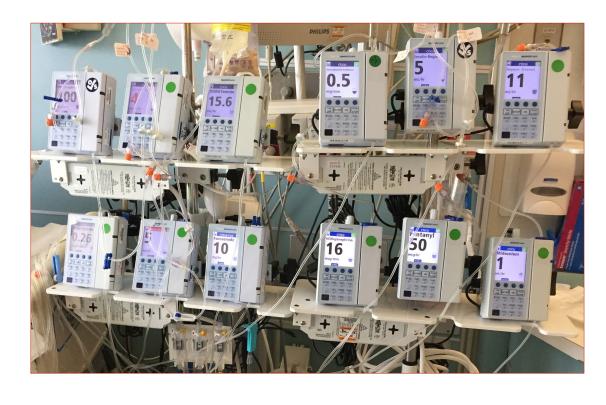
- Patient monitoring during Escalation
- Utility of Hemodynamic Profiling (Invasive vs. Non-Invasive)
- Escalation Strategies in AMI-CS vs. HF-CS, Utility of the Shock Team
- De-Escalation Strategies

Escalating and De-escalating Temporary Mechanical Circulatory Support in Cardiogenic Shock: A Scientific Statement From the American Heart Association

Bram J. Geller, MD, Chair, Shashank S. Sinha, MD, MSc, FAHA, Vice Chair, Navin K. Kapur, MD, FAHA, Marie Bakitas, DNSc, CRNP, Leora B. Balsam, MD, Joanna Chikwe, MD, Deborah G. Klein, MSN, ACNS-BC, FAHA, Ajar Kochar, MD, MHS, Sofia C. Masri, MD, Daniel B. Sims, MD, FAHA, Graham C. Wong, MD, MPH, FAHA, Jason N. Katz, MD, MHS, FAHA, Sean van Diepen, MD, MSc, FAHA, and on behalf of the American Heart Association Acute Cardiac Care and General Cardiology Committee of the Council on Clinical Cardiology; Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation; Council on Cardiovascular Radiology and Intervention; Council on Cardiovascular and Stroke Nursing; Council on Peripheral Vascular Disease; and Council on Cardiovascular Surgery and Anesthesia

Matching CS treatment options

to Patient Needs



HOW

When to consider device therapy:

Escalating inotropes / pressor requirement

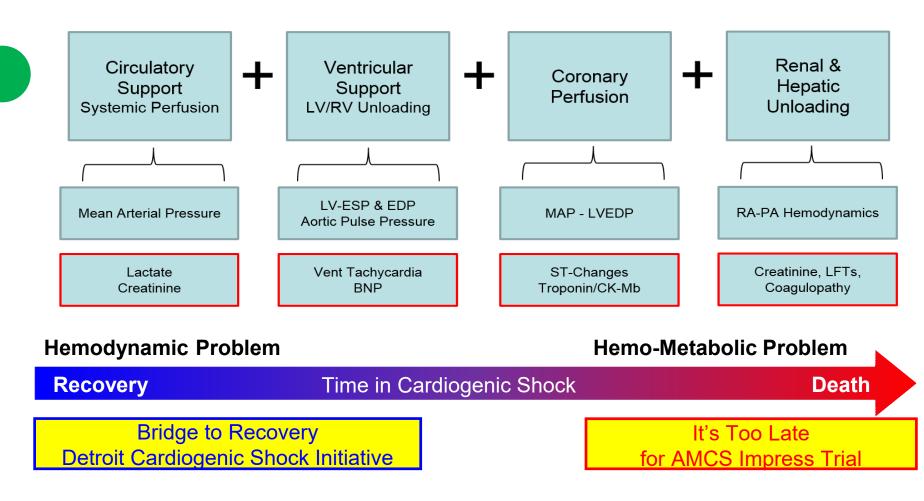
> Catheter Cardiovasc Interv. 2021 Aug 3. doi: 10.1002/ccd.29895. Online ahead of print.

Vasopressors independently associated with mortality in acute myocardial infarction and cardiogenic shock

Mir B Basir ¹, Alejandro Lemor ¹, Sarah Gorgis ¹, Angela M Taylor ², Behnam Tehrani ³, Alexander G Truesdell ³, Aditya Bharadwaj ⁴, Brian Kolski ⁵, Kirit Patel ⁶, Joseph Gelormini ⁷, Josh Todd ⁸, David Lasorda ⁹, Craig Smith ¹⁰, Robert Riley ¹¹, Steve Marso ¹², Robert Federici ¹³, Navin K Kapur ¹⁴, William W O'Neill ¹, National Cardiogenic Shock Initiative Investigators

Matching CS treatment options

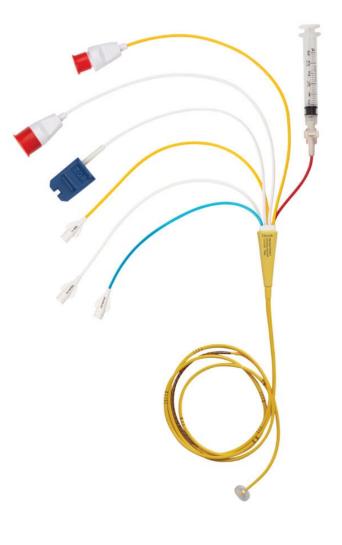
to Patient Needs


WHEN

HOW

HOW TO CHOOSE device therapy:

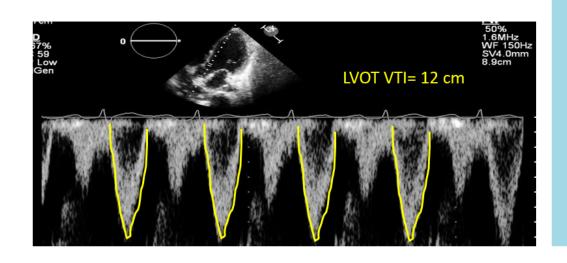
Acute MCS is a
Hemodynamic
Support Platform


Invasive Cardiac Hemodynamics

Metric	Calculation	Markers of cardiogenic shock	
Cardiac index (CI)	CO/body surface area	≤2.2 L/min/m ²	
Cardiac power output (CPO)	(MAP x CO)/451	<0.6 W	
Cardiac power index (CPI)	(MAP x CI)/451	<0.4 W/m ²	
Pulse pressure	systolic – diastolic blood pressure	<25 mmHg	
Systemic vascular resistance (SVR)	[(MAP - CVP) / CO] x 80	variable	

Right Ventricular Metrics	Calculation	Markers of RV dysfunction	
Right atrial pressure (RAP)		>10/15 mmHg	
Right atrial pressure (RAP) / Pulmonary capillary wedge pressure (PCWP)		>0.86 (in acute MI) >0.63 (after LVAD)	
Pulmonary artery pulsatility index (PAPi)	(PASP-PADP) / RAP	≤0.9 (in acute MI) <1.85 (after LVAD)	
Right ventricular stroke work index (RVSWI)	0.0136 x SVi x (mPAP-RAP)	<6 g/m/beat/m ²	

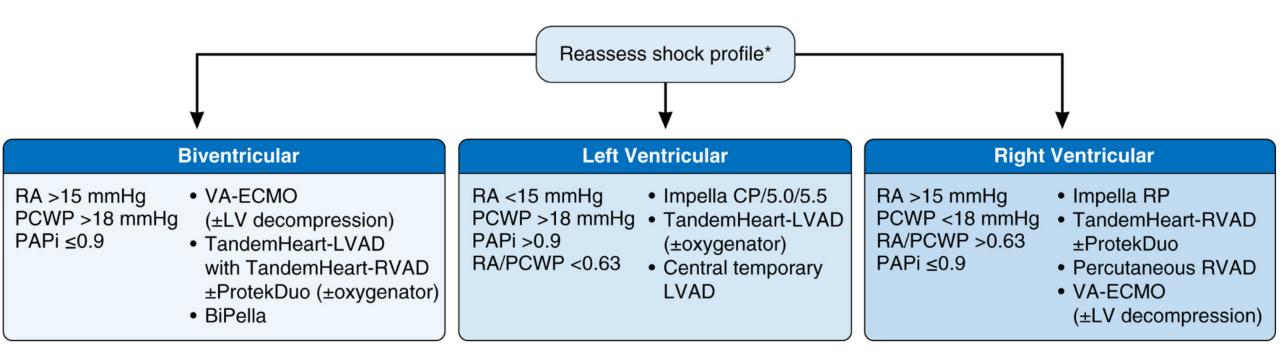
Pulmonary Vascular Metrics	Calculation	Markers of pulmonary vascular disease	
Transpulmonary pressure gradient (TPG)	mPAP-PCWP	≥12 mmHg	
Diastolic pulmonary gradient (DPG)	PADP-PCWP	≥7 mmHg	



Hemodynamic Phenotyping

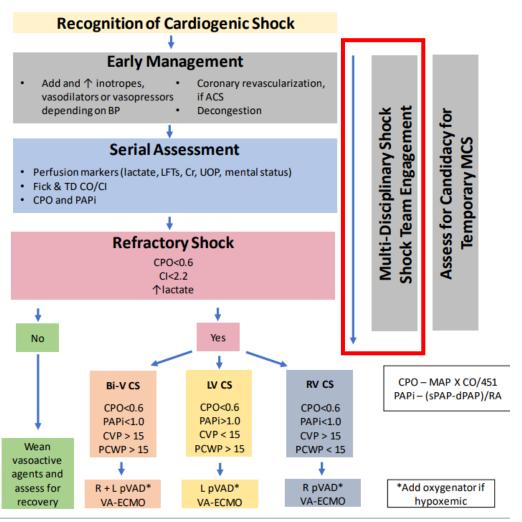
- Invasive (PAC)
- Non-invasive methods (Echo)

Serial Assessments of Stroke Volume & Cardiac output

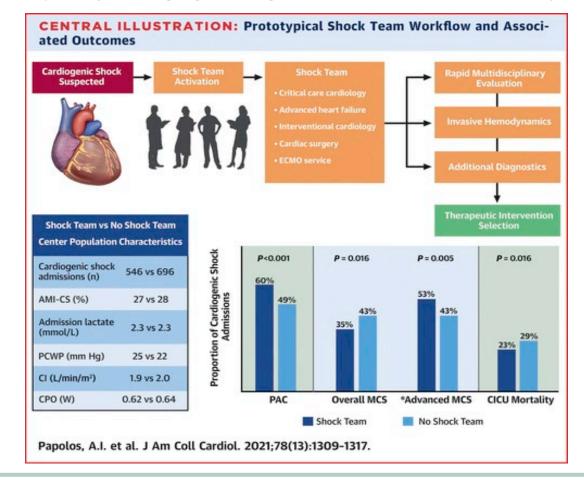

Measure LVOT Diameter
Measure LVOT VTI

 $SV = 3.14(D/2)^2 \times LVOT VTI$

CO= SV x HR

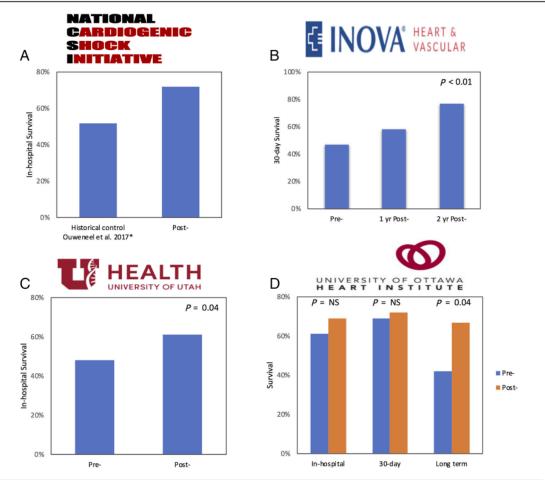

IS IT THE LV, RV OR BOTH?

Shock Teams

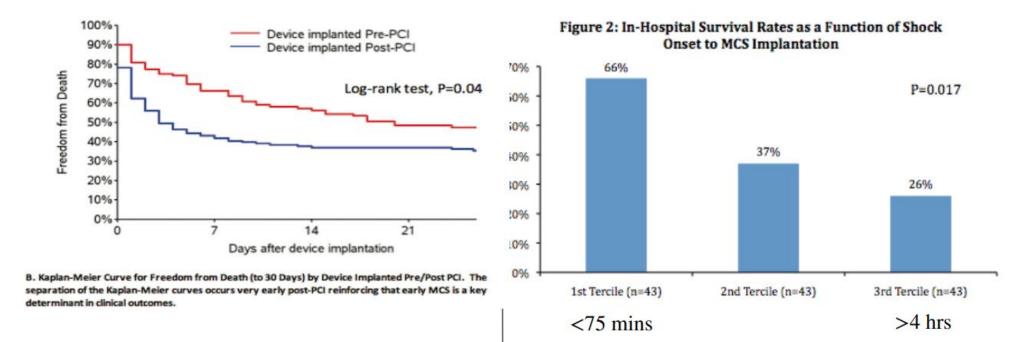


Management and Outcomes of Cardiogenic Shock in Cardiac ICUs With Versus Without Shock Teams of ERFE ACCESS

Original Investigation

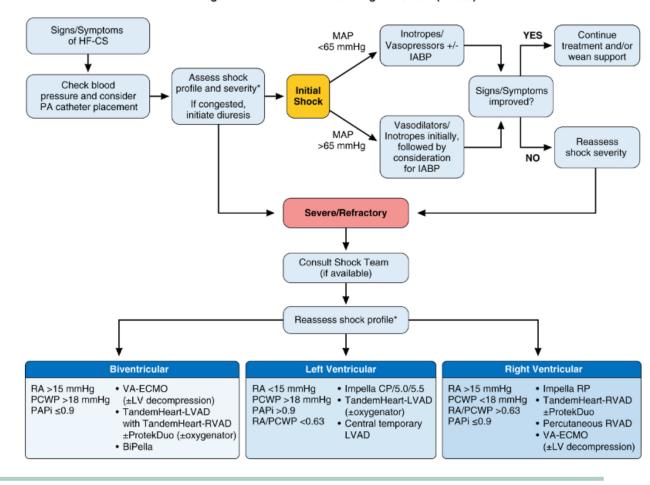

Alexander I. Papolos, Benjamin B. Kenigsberg, David D. Berg, Carlos L. Alviar, Erin Bohula, James A. Burke, Anthony P. Carnicelli,

This is Team Sport


Figure 1 Survival outcomes pre-shock and post-shock team/protocol implementation in the (A) National Cardiogenic Shock Initiative, (B) INOVA Heart and Vascular Institute Shock Team Protocol, (C) Utah Cardiac Recovery shock team, and (D) University of Ottawa Heart Institute Code shock team. *Data from the IMPRESS in Severe Shock Trial. **No baseline institutional survival outcomes or controls reported in the National Cardiogenic Shock Initiative.

Delaying MCS in AMI-CS = Worse Outcomes

Basir M, Schreiber T, Grines C, et al. Effect of Early Initiation of Mechanical Circulatory Support on Survival in Cardiogenic Shock. Am. J. of Cardiology, 2016.



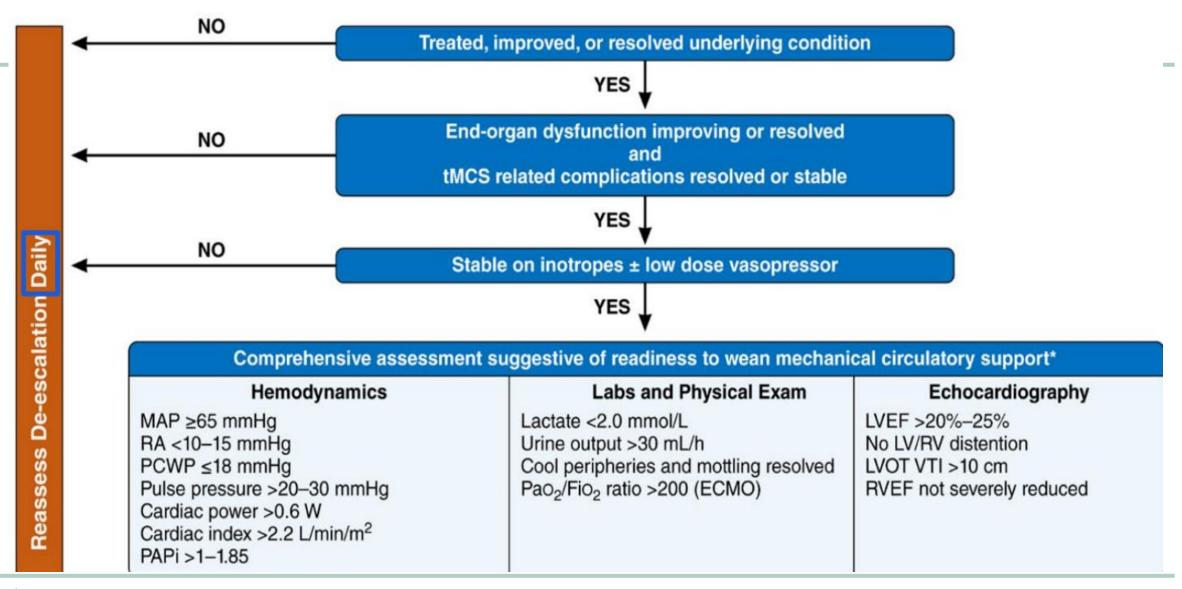
Not all Shock Created Equal

AMI-CS AHF-CS AHF-CS AHF-CS

HF-CS Escalation

Management of Heart Failure Cardiogenic Shock (HF-CS)

Weaning Protocols



When to De-escalate t-MCS

- Daily evaluations for weaning appropriateness
- Goal: partial or full myocardial recovery (ideally resolution of <u>underlying</u> cause of shock)
 - Minimal IV vaso-active medications
 - Improved contractility per echocardiography
- Improvement in end-organ <u>hypo-perfusion</u>
- Euvolemia!
- *MCS related complications (vascular injury, bleeding, etc.)

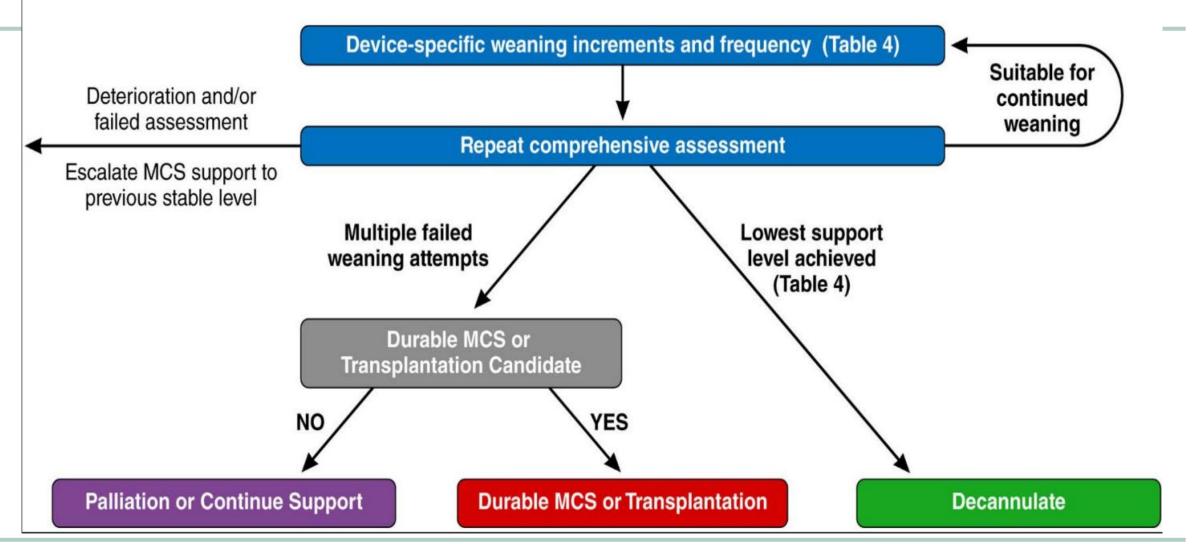
When to De-escalate t-MCS

How to De-escalate t-MCS

• Step-wise decrease in support that is device specific

- Timing intervals of support decrements:
 - Rapid: 15 minutes (e.g. high risk PCI)
 - Standard: q2-4 hours (e.g. decompensated heart failure)

Concomitant <u>anticoagulation</u> is necessary to minimize risk of thrombo-embolic events



Device specific approach for t-MCS De-Escalation

	Device	Weaning increment	Rapid weaning frequency	Standard weaning frequency	Lowest level before decannulation
Im	IABP	From 1:1 to 1:2 to 1:3 (or 1:4/1:8, depending on the manufacturer) Alternatively, may decrease volume serially by 10%–25%	Direct from full support to 1:3 (or 1:4) 75% reduction of vol- ume	Every 2-4 h	1:3 (or 1:4/1:8) 75% reduction of volume
	Impella 2.5, CP, or 5.5	P1-P2	Every 5 min	Every 2-4 h	P2
	TandemHeart LVAD	0.5 L/min	Every 5 min	Every 2-4 h	2 L/min
RV support*	Impella RP	P1-P2	Every 5 min	Every 2-4 h	P2 (though maintain flows >1.5 L/min)
	TandemHeart RVAD ±ProtekDuo	0.5 L/min	Every 5 min	Every 2-4 h	2 L/min
Biventricular support*	VA-ECMO	0.5-1 L/min	Every 5–15 min	Every 2-4 h	1-2 L/min (generally not maintained at 1 L/min)

How to wean t-MCS

Conclusion

- Early, upfront therapy must match patient's needs
- Clinical, hemodynamic, metabolic and imaging parameters should help guide escalation and de-escalation strategies
- Multidisciplinary shock teams can help facilitate care
- Daily assessment of readiness to wean
- Have a method to your "exit" strategies

Thank you

Adnan Khalif, MD FACC FSCAI

Interventional and Critical Care Cardiology

Co-Director, Cardiac Intensive Care Unit

Associate Program Director, Interventional Cardiology Fellowship

Adnan.Khalif@ahn.org

@AdnanKhalifMD

(412) 266-0660

