
Advanced Cardiac MRI

SAED ALNAIMAT, MD

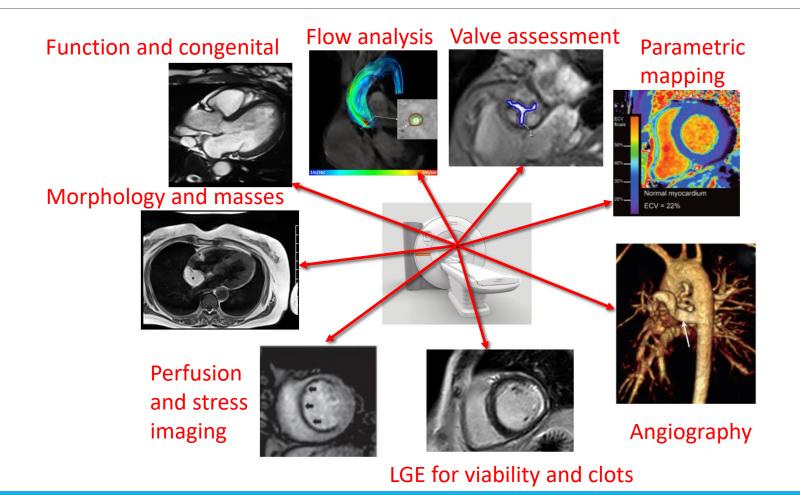
CENTER FOR CARDIAC MRI, ALLEGHENY GENERAL HOSPITAL

PITTSBURGH

ACKNOWLEDGEMENT

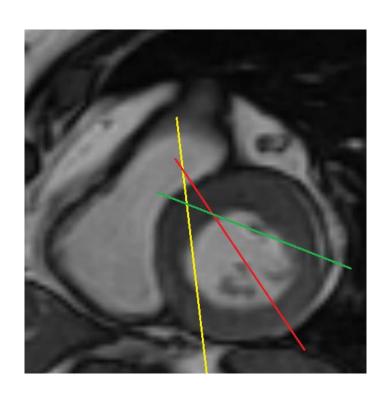
Dr. Robert Biederman

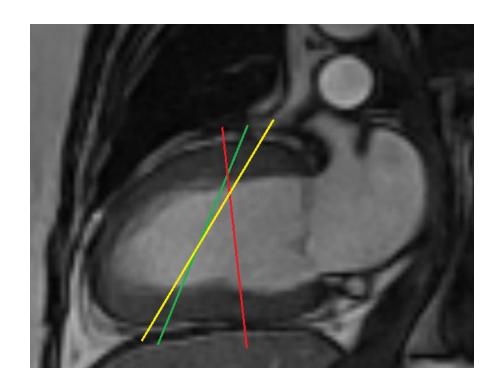
BACKGROUND



Dr. Raymond Damadian (1977)

WHEN TO OBTAIN A CARDIAC MR?

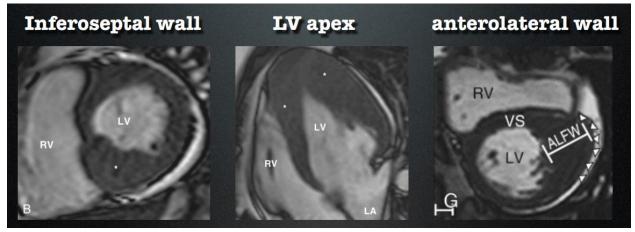

SCOPE OF CMR

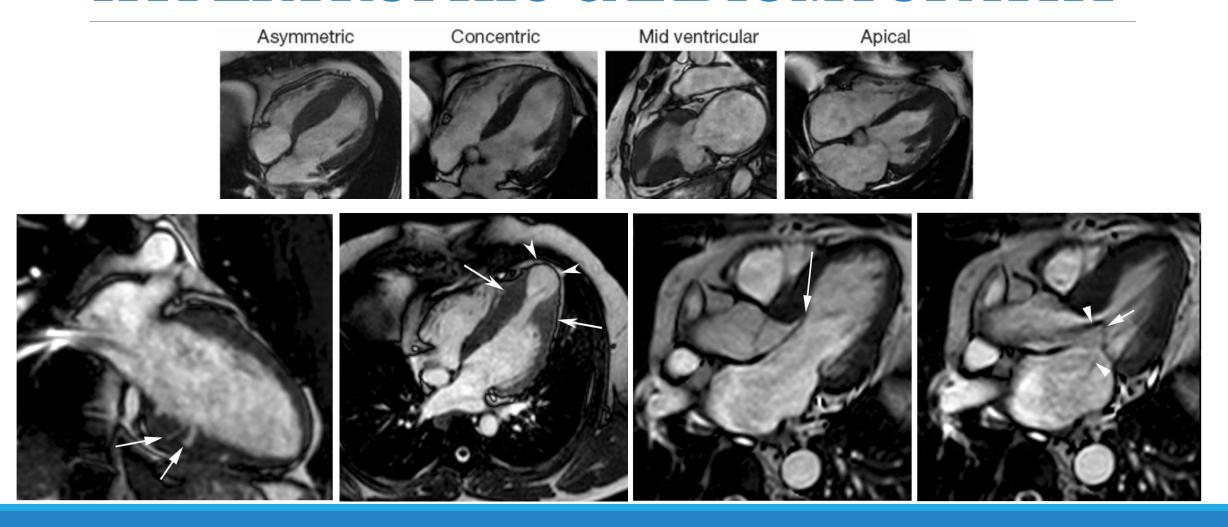


ANATOMIC ASSESSMENT

- CMR provides unparalleled assessment of cardiac chamber size, function, wall thickness, and tissue characterization.
- Examples of cardiac disorders that are best (if not exclusively) assessed by CMR include:
 - Hypertrophic cardiomyopathy
 - Cardiac amyloidosis
 - Cardiac sarcoidosis
 - Hemochromatosis
 - Mitral annular disjunction
 - Non-compaction
 - ARVD
 - Pericarditis
 - Cardiac masses

ANATOMIC ASSESSMENT


HYPERTROPHIC CARDIOMYOPATHY


AHA Journals	Journal Information	All Issues	Subjects	Features	Resources & Educa	
Home > Journal of the	e American Heart Association > Vol. 9, No	o. 5 > Apical Hypertrophi	c Cardiomyopathy: The	Variant Less Known		
6 OPEN ACCESS	Apical Hypertrophic Cardiomyopathy: The Variant Less Known					
REVIEW ARTICLE	Rebecca K. Hughes, Kristopher D. Knott, James Malcolmson, João B. Augusto, Saidi A. Mohiddin, Peter Kellman, James C. Moon and Gabriella Captur ⊡					
PDF/EPUB	Originally published 28 Feb 2020 http	os://doi.org/10.1161/JAHA.11	9.015294 Journal of the Am	erican Heart Association. 20	020;9:e015294	

Apical hypertrophy was missed by echocardiography in 40% of cases, later detected by CMR


Echo "blind" areas

HYPERTROPHIC CARDIOMYOPATHY

LGE QUANTIFICATION

2020 AHA/ACC Guideline for the Diagnosis and Treatment of Patients With Hypertrophic Cardiomyopathy

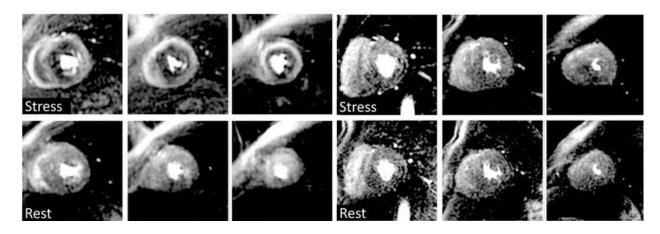
A Report of the American College of Cardiology/American Heart **Association Joint Committee on Clinical Practice Guidelines**

Recomme	endations !	or CMR Imaging
		that support the recommendations are ne Data Supplement 2.
COR	LOE	Recommendations

COR	LOE	Recommendations	
1	B-NR	For patients suspected to have HCM in whom echocardiography is inconclusive, CMR imaging is indicated for diagnostic clarification. 1-7	
1	B-NR	 For patients with LVH in whom there is a sus- picion of alternative diagnoses, including infill trative or storage disease as well as athlete's heart, CMR imaging is useful¹⁻⁷ (Figure 1). 	
1	B-NR	 For patients with HCM who are not otherwis identified as high risk for SCD, or in whom a decision to proceed with ICD remains uncer- tain after clinical assessment that includes personal/family history, echocardiography, an ambulatory electrocardiographic monitoring, CMR imaging is beneficial to assess for maxi- mum LV wall thickness, ejection fraction (EF), LV apical aneurysm, and extent of myocardial fibrosis with LGE.¹⁻¹⁵ 	
1	B-NR	 For patients with obstructive HCM in whom the anatomic mechanism of obstruction is inconclusive on echocardiography, CMR imaging is indicated to inform the selection and planning of SRT.¹⁶⁻²⁰ 	
2b	C-EO	 For patients with HCM, repeat contrast- enhanced CMR imaging on a periodic bas (every 3 to 5 years) for the purpose of SCI risk stratification may be considered to ev- ate changes in LGE and other morphologi changes, including EF, development of ap aneurysm, or LV wall thickness (Figure 1, Table 7). 	

Table 7. Established Clinical Risk Factors for HCM Sudden Death Risk Stratification

Family history of sudden death from HCM	Sudden death judged definitively or likely attributable to HCM in ≥1 first-degree or close relatives who are ≤50 y of age. Close relatives would generally be second-degree relatives; however, multiple SCDs in tertiary relatives should also be considered relevant.	
Massive LVH	Wall thickness ≥30 mm in any segment within the chamber by echocardiography or CMR imaging; consideration for this morphologic marker is also given to borderline values of ≥28 mm in individual patients at the discretion of the treating cardiologist. For pediatric patients with HCM, an absolute or z-score threshold for wall thickness has not been established; however, a maximal wall that corresponds to a z-score ≥20 (and >10 in conjunction with other risk factors) appears reasonable.	
Unexplained syncope	≥1 Unexplained episodes involving acute transient loss of consciousness, judged by history unlikely to be neurocardiogenic (vasovagal) etiology, nor attributable to LVOTO, and especially when occurring within 6 of evaluation (events beyond 5 y in the past do not appear to have relevance).	
HCM with LV systolic dysfunction	Systolic dysfunction with EF <50% by echocardiography or CMR imaging.	
LV apical aneurysm	Apical aneurysm defined as a discrete thin-walled dyskinetic or akinetic segment of the most distal portion the LV chamber; independent of size.	
tensive LGE on CMR imaging Diffuse and extensive LGE, representing fibrosis, either quantified or estimated by visual inspection, comprising ≥15% of LV mass (extent of LGE conferring risk has not been established in children).		
NSVT on ambulatory monitor	It would seem most appropriate to place greater weight on NSVT as a risk marker when runs are frequent (23), longer (210 beats), and faster (2200 bpm) occurring usually over 24 to 48 h of monitoring. For pediatri patients, a VT rate that exceeds the baseline sinus rate by >20% is considered significant.	

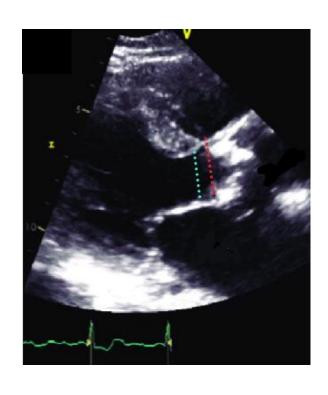

CORONARY MICROVASCULAR ISCHEMIA

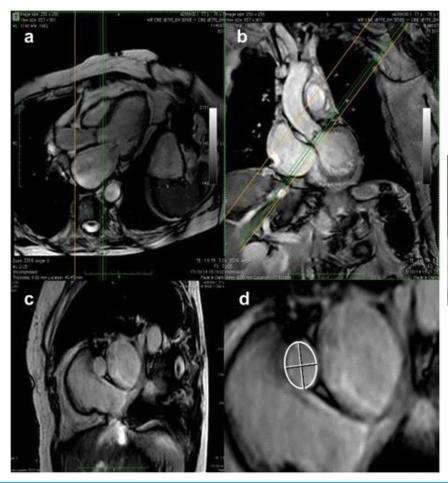
The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Coronary Microvascular Dysfunction and Prognosis in Hypertrophic Cardiomyopathy

Franco Cecchi, M.D., Iacopo Olivotto, M.D., Roberto Gistri, M.D., Roberto Lorenzoni, M.D., Giampaolo Chiriatti, M.D., and Paolo G. Camici, M.D.

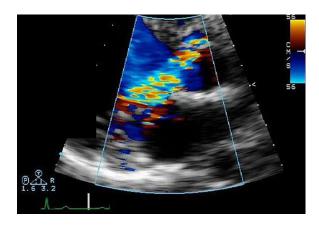


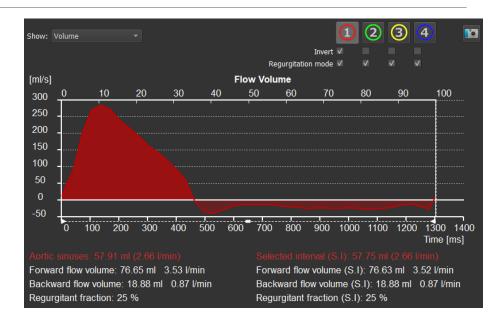

VALVE ASSESSMENT

- CMR provides excellent assessment for all valvular pathologies
- No assumptions
- Direct planimetry for valve area measurement at the correct orthogonal plane
- Flow assessment by CMR works very well under continuous, laminar flow conditions without friction or turbulence

Echo

CMR



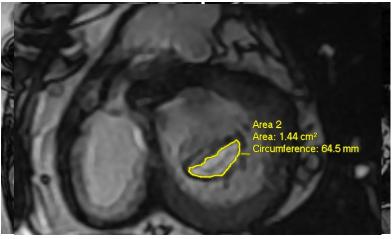

AORTIC REGURGITATION

Echo

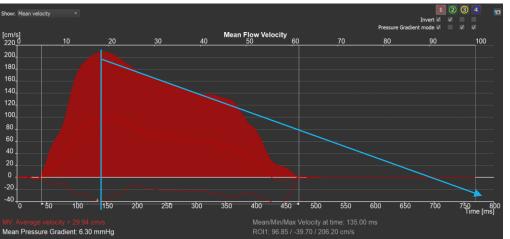
- Jet width?
- Vena contracta width?
- ERO?
- Pressure half-time?

CMR (PVM)

- Direct measurement of regurgitant volume and regurgitant fraction
- Ability to directly measure regurgitant orifice

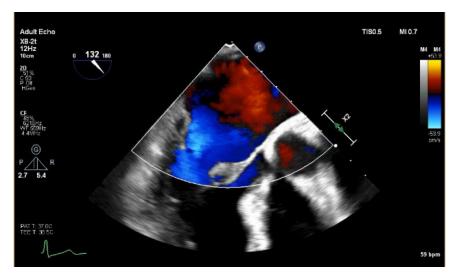

MITRAL STENOSIS

Echo



- Level?
- Angle?

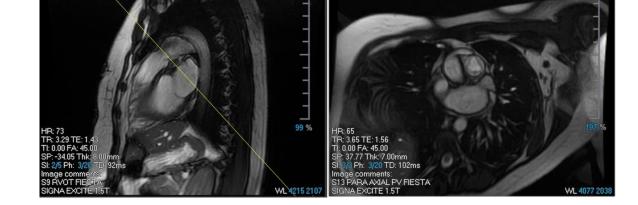
CMR


No assumptions

MITRAL REGURGITATION

Echo

CMR

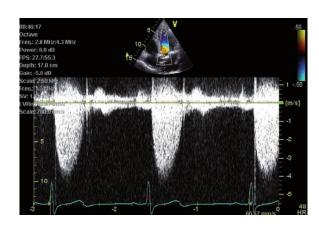


- Moderate-to-severe mitral regurgitation
- PISA ERO 0.29 cm2, regurgitant volume 32 cc, vena contracta 0.64 cm?
- Volumetric analysis likely underestimated due to eccentricity of regurgitant jet.
- MR = LV stroke volume (EDV-ESV) Aortic forward flow (PVM)
- Eccentric mitral regurgitation noted (posteriorly directed). Severe mitral regurgitation. Regurgitant volume is 47 cc. Regurgitant fraction is 42% by phase velocity mapping
- Mitral valve disjunction noted (11mm).

PULMONIC VALVE

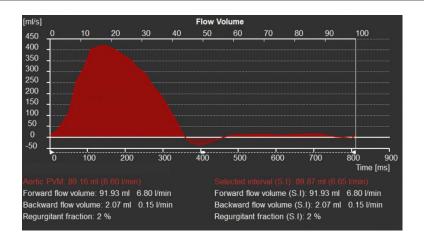
Echo (VTI)

CMR (PVM)



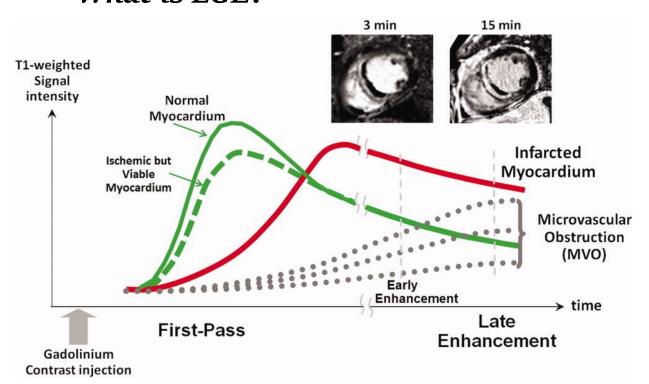
This section is intentionally left blank

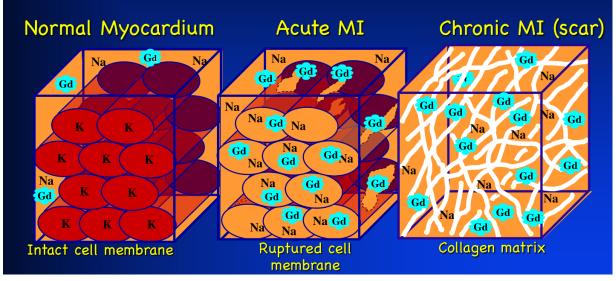
- Direct measurement of pulmonic valve area of the orthogonal view
- Direct measurement of regurgitant flow


Flow quantification

Echo (VTI)

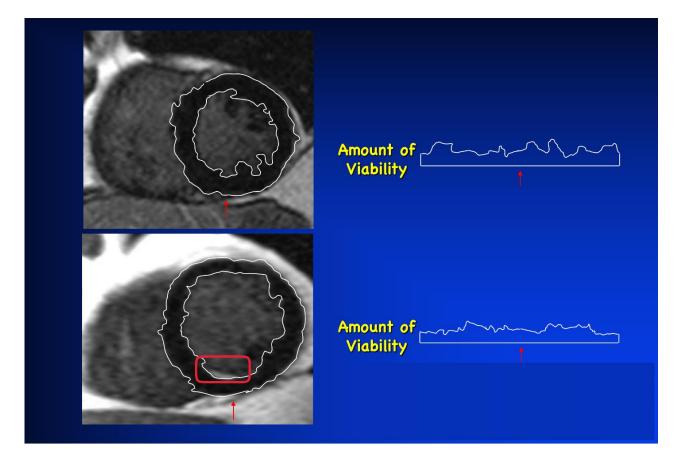
- Represent one line of cross-sectional area of flow
- May not be aligned with the flow
- Acquired over one cardiac cycle
- Subject to variability (position, orientation, operator, window)

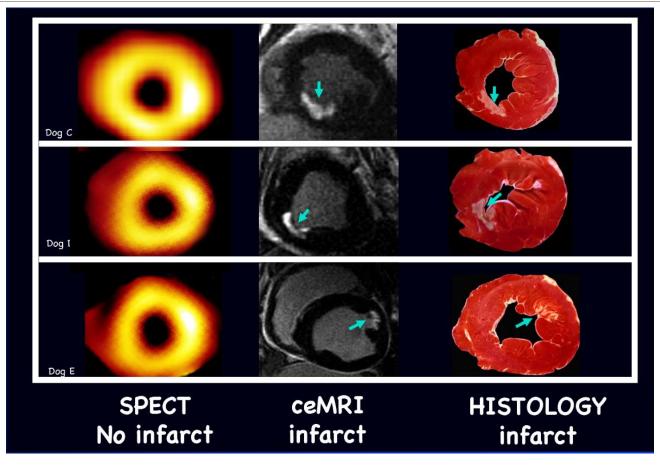

CMR (PVM)



- Represent the whole cross-sectional flow
- Obtained exactly perpendicular to the flow even if eccentric flow
- Averaged from several cardiac cycles ~ 2 minutes
- Highly reproducible

VIABILITY


What is LGE?



VIABILITY

What can CMR provide for viability assessment that other imaging modalities cannot?

VIABILITY

Lancet 2003;361:374-79

Take home points

- > CMR is the gold standard for anatomic, functional, and tissue characterization of the heart
- > CMR is evolving (parametric mapping, 4D flow, quantitative perfusion, compressed sensing etc.)
- > CMR, if anything, is under-utilized. The more CMRs you order, the better fortune you will get.
- If you send us a patient, <u>PLEASE PLEASE send along the history</u> (we look at everything and do a free consultation for you!)