Molecular Cytopathology Part 2

Sinchita Roy-Chowdhuri, M.D., PhD.

Associate Professor, Department of Pathology

Medical Director, Molecular Diagnostic Laboratory (Solid Tumors)

Division of Pathology and Laboratory Medicine

The University of Texas M.D. Anderson Cancer Center, Houston, TX

Sinchita_Roy

sroy2@mdanderson.org

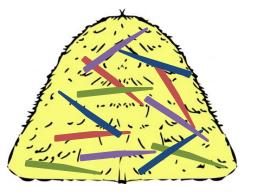
Making Cancer History®

Key Objectives

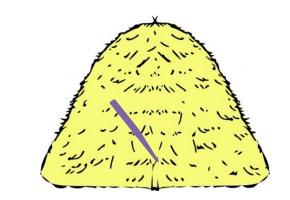
- Cytology provides the versatility of specimen preparations that offer a variety of options for molecular testing
- A multitude of pre-analytical factors impact tissue quality and the success of molecular testing
- The pathologist plays a key role in triage and specimen handling that can improve the success of molecular testing

Key Element of Specimen Selection

Role of the pathologist in **specimen selection** is finding the best fit (molecular assay) for the sample

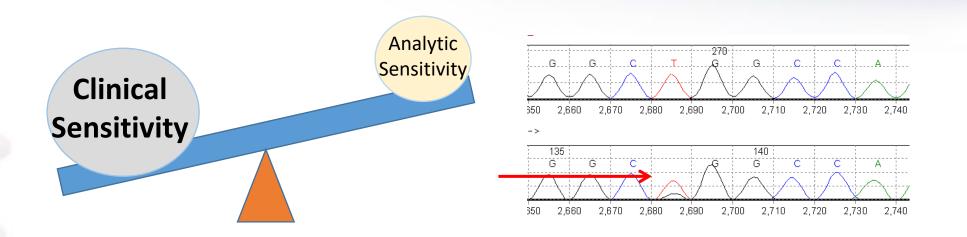

- Modulate the specimen to fit the assay
- Modulate the assay to fit the specimen

Mutation Analysis Assay Design is a Balancing Act

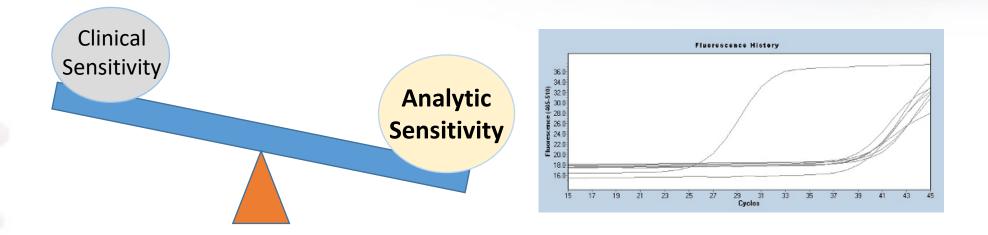

Most mutational assay design is a balancing act between **Clinical** and **Analytical** Sensitivity

Mutation Analysis Assay Design is a Balancing Act

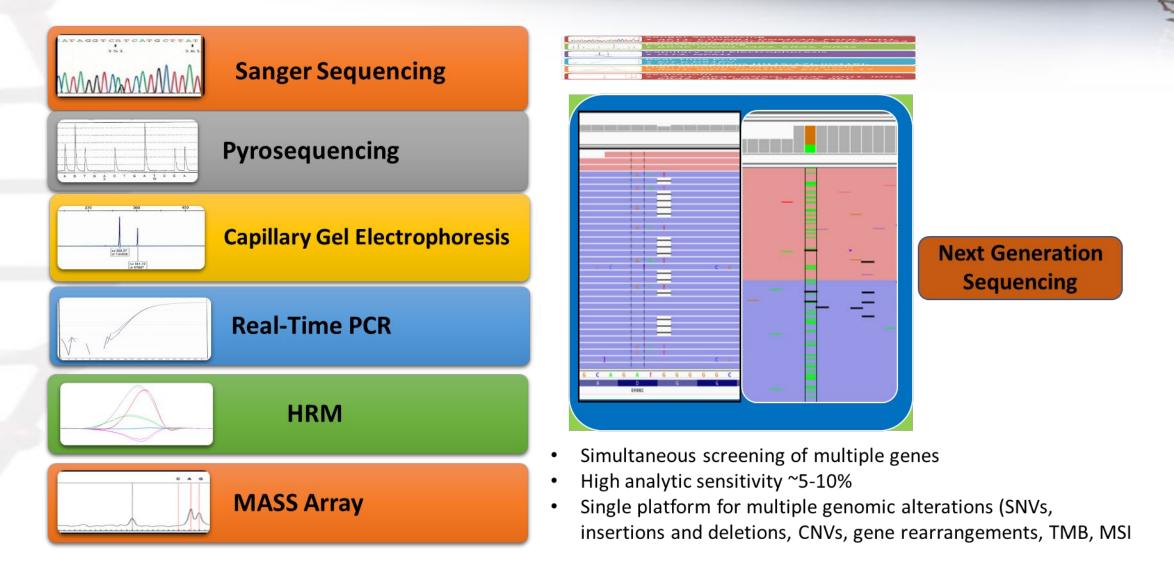
Clinical Sensitivity: How many of the possible changes does the test detect? Analytical Sensitivity: How sensitively can the test detect a rare change in a background of normal?



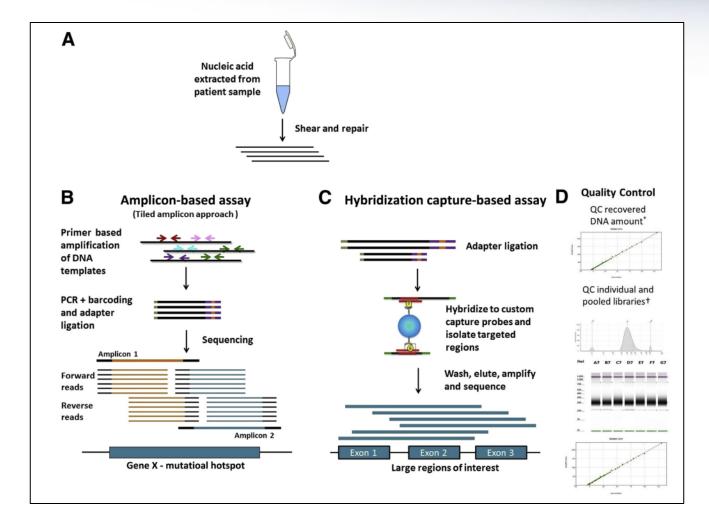
- The test can identify needles of many different colors, but need to exist at a relatively high level


- The test can identify only a few colors of needles, but can pick them out even when they are very rare

Sanger Sequencing Low Analytic/High Clinical Sensitivity


- High **clinical sensitivity**: Sanger sequencing should detect ALL potential changes
- Analytic sensitivity is among the lowest of all testing methods: ~15-20% of alleles need to be mutant to be detected reliably

Real-time PCR High Analytic/Low Clinical Sensitivity



- Can have a very high analytic sensitivity (~1-5% allelic)
- The mutations identified are strictly those which are part of the assay design (low clinical sensitivity)

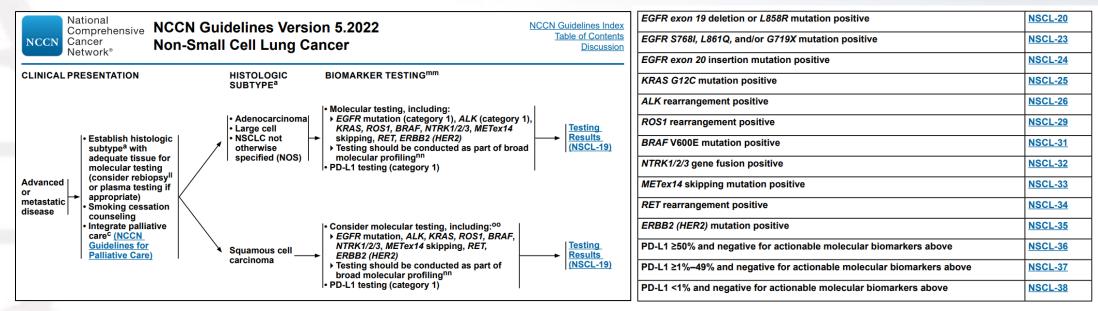
Next Generation Sequencing: A Multiplexed Assay for Clinical Testing

Next Generation Sequencing

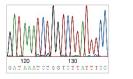
Molecular Testing: The Analytics

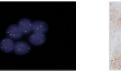
Molecular Diagnostics in an Era of Targeted Therapy

Challenges:

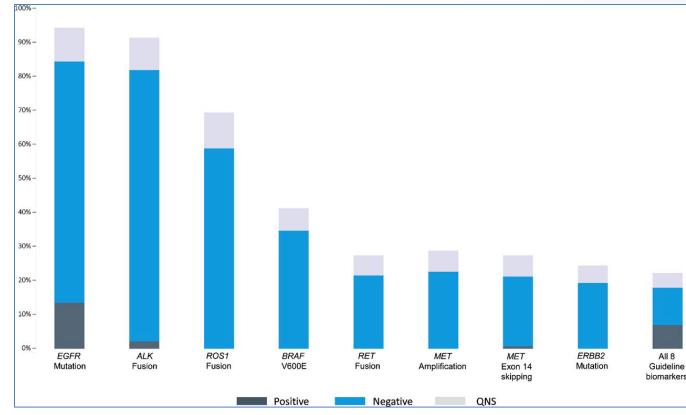

Doing more with less

Limited sample size

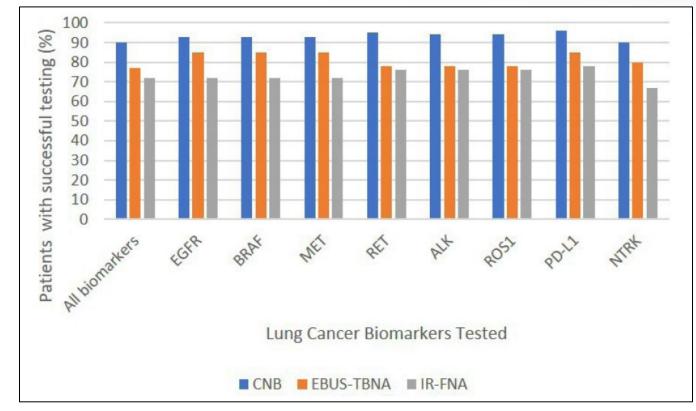

Targeted therapy and evaluating multiple markers in tumor specimens

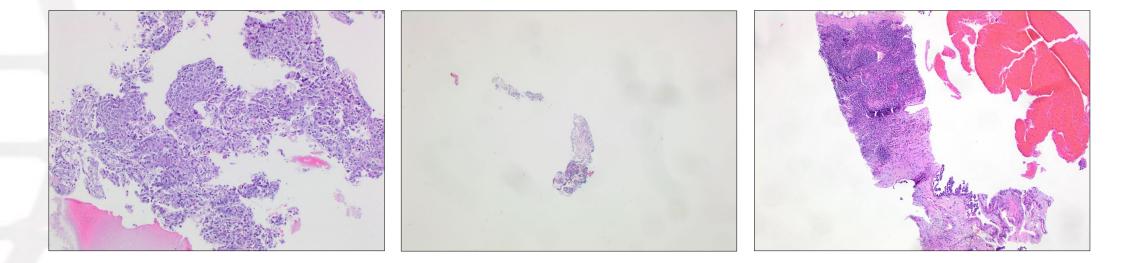

Turn around time Timely and accurate reporting

- Depends on the number of different tests (genes, assays) that are required
- Depends on the adequacy of the tissue obtained (viability, cellularity, tumor fraction etc.)
- Depends on how the tissue is handled

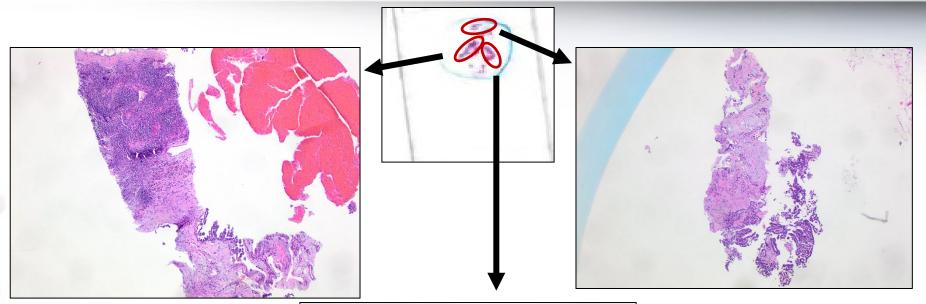


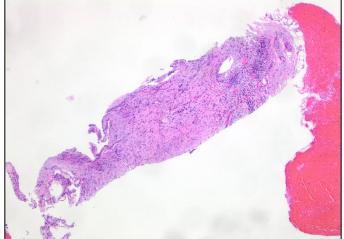
10 targets + TMB+ MSI



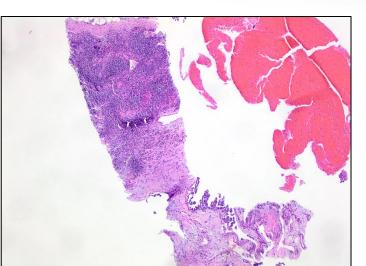


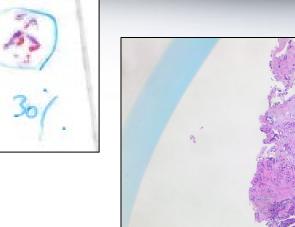
Reference: Leighl et al. Clin Cancer Res 2019;25:4691-4700

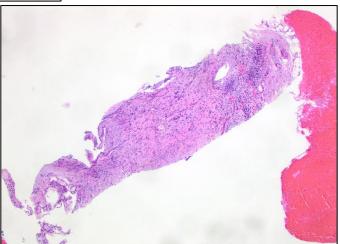

Reference: Faber et al. J Clin Pathol. 2021 May 5:jclinpath-2021-207597. doi: 10.1136/jclinpath-2021-207597.


- Depends on the number of different tests (genes, assays) that are required
- Depends on the adequacy of the tissue obtained (viability, cellularity, tumor fraction etc.)
- Depends on how the tissue is handled

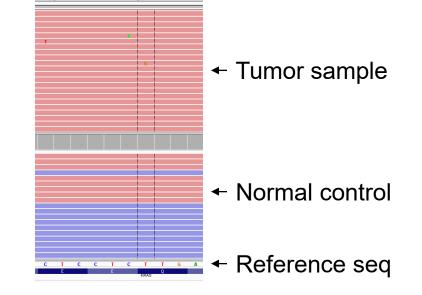
- Depends on the number of different tests (genes, assays) that are required
- Depends on the adequacy of the tissue obtained (viability, cellularity, tumor fraction etc.)
- Depends on how the tissue is handled







- A. <20%
- B. 20-30%
- C. 30-40%
- D. 40-50%
- E. None of the above

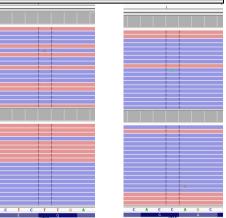

- A. <20%
- B. 20-30%
- C. 30-40%
- D. 40-50%
- E. None of the above

Issues with Low Tumor Fraction Samples

		Filtered va	riant calls - 9 (373 total row	s)							
Gene	HGVS	dbSNP	COSMIC	dbCG	Strand	Loc	Туре	Freq	Coverage	Variant(+)	varo
KRAS	NM_004985.3(KRAS):c.183A>C p.Q61H	rs17851045	COSM554	2	-	Exon 3	SNV	2.1	2207	A->C	46
TP53	NM_000546.5(TP53):c.733G>A p.G245S	rs28934575	COSM6932		-	Exon 7	SNV	2	1631	G->A	33
JAK1	NM_002227.2(JAK1):c.2100T>G p.S700R				-	Exon 15	SNV	2.6	1290	T->G	33
JAK1	NM_002227.2(JAK1):c.2096C>A p.A699D				-	Exon 15	SNV	2.6	1290	C->A	34
CSF1R	NM_005211.3(CSF1R):c.1596_1598del p.L537del				-	Exon 11	Indel	2.4	1392	GCTC->C	33
POLE	NM_006231.2(POLE):c.4330dupG p.V1444fs*6				-	Exon 34	Indel	2.1	1353	T->GT	29
PIK3CA	NM_006218.2(PIK3CA):c.2179dupA p.T727fs*11				+	Exon 14	Indel	2.9	966	G->GA	28
FGFR1	NM_015850.3(FGFR1):c.376G>A p.E126K				-	Exon 4	SNV	5	600	G->A	30
NOTCH1	NM_017617.3(NOTCH1):c.7067C>G p.A2356G				-	Exon 34	SNV	2.5	1229	C->G	31

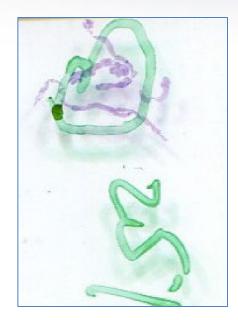
Detecting a clinically relevant mutation at a low VAF in a low tumor sample:

- Call? (confidence of real call vs artifact/noise)
- Confirm? (High sensitivity orthogonal platform)
- Ignore? (potential patient care problem)
- Cancel? (patient needs rebiopsy)



Issues with Low Tumor Fraction Samples

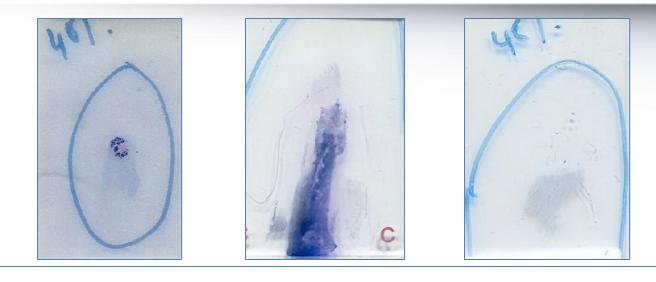
		Filtered varia	ant calls - 18 (345 total rov	vs)					_		
Gene	HGVS	dbSNP	COSMIC	dbCG	Strand	Loc	Туре	Freq	Coverage	Variant(+)	varce
KRAS	NM_004985.3(KRAS):c.183A>C p.Q61H	rs17851045	COSM554	***2***	-	Exon 3	SNV	2.5	2000	A->C	50
KRAS	NM_004985.3(KRAS):c.34G>T p.G12C	rs121913530	COSM516	3	-	Exon 2	SNV	1.1	2211	G->T	25
RNF43	NM_017763.4(RNF43):c.1932del p.K644fs*56				-	Exon 9	Indel	01.0	665	AT->T	341
FBXW7	NM_033632.3(FBXW7):c.2001_2005delinsAGT p.S668fs*2				-	Exon 12	Indel	2.9	1470	GAGTG->AGT	42
FBXW7	NM_033632.3(FBXW7):c.2009del p.G670fs*37				-	Exon 12	Indel	4	1470	GA->A	59
FBXW7	NM_033632.3(FBXW7):c.2009dupG p.V671fs*23				-	Exon 12	Indel	4.3	1470	A->GA	63
FBXW7	NM_033632.3(FBXW7):c.2002_2004delinsGAGTG p.S668				-	Exon 12	Indel	2.2	1470	AGT->GAGTG	33
FBXW7	NM_033632.3(FBXW7):c.2001del p.S668fs*39		COSM34018		-	Exon 12	Indel	6.9	1470	GA->A	102
FBXW7	NM_033632.3(FBXW7):c.2001dupG p.S668fs*26				-	Exon 12	Indel	3.8	1470	A->GA	56
EGFR	NM_005228.3(EGFR):c.2214dupT p.K739*				+	Exon 19	Indel	2.6	1441	G->GT	37
PTCH1	NM_000264.3(PTCH1):c.3913_3915delinsA p.D1305fs*19				-	Exon 23	Indel	11.2	430	GAC->A	48
PTCH1	NM_000264.3(PTCH1):c.3913del p.D1305fs*67				-	Exon 23	Indel	28.4	430	GA->A	122
PTCH1	NM_000264.3(PTCH1):c.3921del p.R1308fs*64				-	Exon 23	Indel	97.6	420	CA->A	410
TSC1	NM_000368.4(TSC1):c.3127_3129del p.S1043del				-	Exon 23	Indel	2.8	1041	GCAG->G	29
PIK3CB	NM_006219.2(PIK3CB):c.1658del p.N553fs*55				-	Exon 11	Indel	4	1250	AT->T	50
FGFR1	NM_015850.3(FGFR1):c.376G>A p.E126K				-	Exon 4	SNV	8.8	556	G->A	49
RB1	NM_000321.2(RB1):c.13del p.T5fs*60				+	Exon 1	Indel	90	590	CA->C	531
RB1	NM_000321.2(RB1):c.13A>C p.T5P				+	Exon 1	SNV	15.4	593	A->C	91


Detecting a clinically relevant mutation at a low VAF in a low tumor sample that is reproducible vs not:

- Call? (confidence of real call vs artifact/noise)
- Ignore? (potential patient care problem)
- Cancel? (patient needs rebiopsy)

Case Example 2

- Patient with lung adenocarcinoma
- Known *EGFR* mutation
- Progression on TKI therapy
- Suspecting *EGFR* resistance


Somatic Mutations

Gene	Standardized Nomenclature (HGVS)
APC	NM_000038.5(APC):c.4348C>T p.R1450*
ATM	NM_000051.3(ATM):c.6951G>C p.K2317N
EGFR	NM_005228.3(EGFR):c.2155G>T p.G719C
EGFR	NM_005228.3(EGFR):c.2303G>T p.S768I

Location	DNA change	Protein change	dbSNP ID	COSMIC ID
Exon 16 Exon 47	SNV SNV		rs121913332	COSM13127
Exon 18 Exon 20	SNV		rs28929495 rs121913465	

Allelic Frequency <10%

Case Example 2

I. Mutations in ordered genes

Gene	Standardized Nomenclature (HGVS)		Location	DNA change	Protein change	dbSNP ID	COSMIC ID
EGFR EGFR EGFR	NM_005228.3(EGFR):c.2155G>T p.G NM_005228.3(EGFR):c.2369C>T p.T NM_005228.3(EGFR):c.2303G>T p.S	790M	Exon 18 Exon 20 Exon 20	SNV SNV SNV	Missense Missense	rs28929495 rs121434569 rs121913465	COSM6240
II. Mut	ations in non-ordered genes						
Gene	Standardized Nomenclature (HGVS)		Location	DNA change	Protein change	dbSNP ID	COSMIC ID
APC TP53	NM_000038.5(APC):c.4348C>T p.R1 NM_000546.5(TP53):c.517del p.V173		Exon 16 Exon 5	SNV Deletion	Nonsense Nonsense		COSM13127 COSM43732
		Allelic	Freque	ency			
		• Sen	sitizing	mutatio	า 25%		
		• Resi	istance	mutatior	ו 10%		

Tumor Fraction: FNA versus CNB

FNA samples are inherently enriched in tumor cells

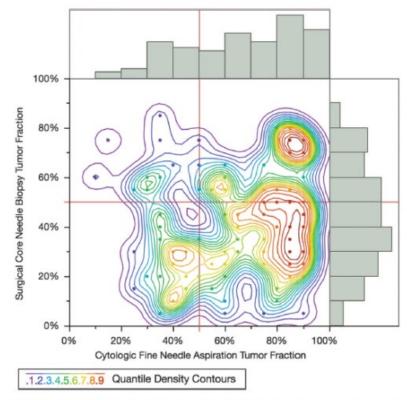
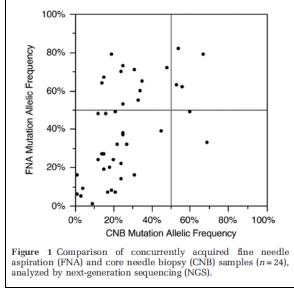



Figure 3 Density contour plot comparing estimated tumor fraction from concurrently acquired core needle biopsy and fine needle aspiration samples (n = 100).

Cytology Samples Provide Excellent Substrates for NGS

Mod Pathol. 2017 Apr;30(4):499-508.

- FNA samples are inherently enriched in tumor cells
- FNA samples had lower numbers of underperforming amplicons
- Normalized average amplicon coverage is significantly higher in FNA samples

Cytology Samples Provide Excellent Substrates for NGS

Next-Generation Sequencing of Cytologic Preparations: An Analysis of Quality Metrics

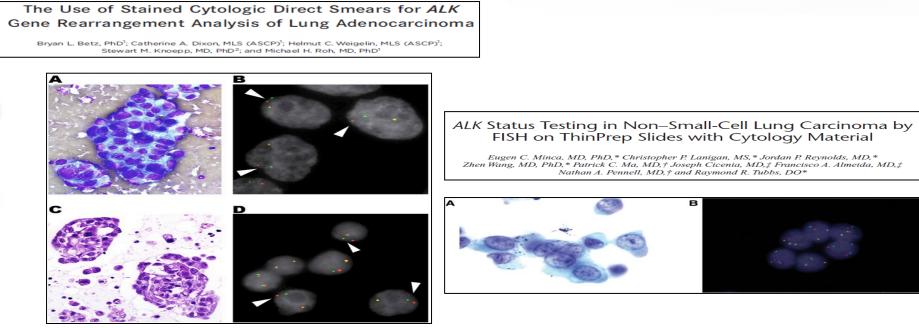
David H. Hwang, MD ^[b]; Elizabeth P. Garcia, PhD²; Matthew D. Ducar, MS³; Edmund S. Cibas, MD ^[b]; and Lynette M. Sholl, MD^{1,2}

Quality Metric	Smears/LBPs	Core Biopsies	Cell Blocks	Р
Adequacy rate, n/N (%)	23/26 (88)	77/87 (89)	29/30 (97)	.41
Initial DNA concentration, ng/µL	6.84	7.70	10.45	.70
Postshearing fragment size, bp	317.2	411.7	385.8	<.001
Post-library preparation fragment size, bp	356.3	336.3	355.6	.21
Fragment size difference, bp	52.5	-72.3	-47.6	<.001
Insert size, bp	191	177	179	<.001
Total reads ^a	$2.79 imes 10^7$ [1.085]	$2.48 imes 10^7$ [0.983]	2.50×10^7 [1.002]	.29
Passing-filter reads aligned ^a	2.59×10^{7} [1.085]	$2.30 imes 10^7$ [0.982]	2.29×10^{7} [1.003]	.33
Percent passing-filter unique reads aligned ^a	96.3% [1.001]	94.3% [1.001]	94.1% [1.000]	.70
Mean target coverage ^a	400.3% [1.181]	156.0% [0.989]	147.8% [1.006]	.04
Percentage of loci with >100× coverage ^a	97.2% [1.013]	76.2% [0.988]	77.0% [1.003]	.24
Percent duplication ^a	32.0% [0.929]	70.5% [1.001]	70.5% [0.996]	<.001
Percent selected bases ^a	49.5% [1.019]	49.0% [1.010]	48.7% [1.003]	.14
Percent usable bases on bait ^a	26.7% [1.049]	11.1% [1.002]	10.7% [0.999]	.03

Median values are presented.

^a Values within square brackets are values normalized by the flow cell average; P values are based on the normalized values.

Smears/LBP show better quality metrics than FFPE


- higher mean insert size
- higher mean target coverage
- higher percent usable bases
- lower duplication rate
- lower post-shearing fragment size

What about Fluorescence In-situ Hybridization (FISH) in Cytology?

FISH in Cytology

- Can be performed on a variety of cytology specimen preparations
- Minimum requirements (number of cells) are assay dependent
- Tumor fraction less of a concern
- Tumor nuclei have to be easily distinguished from background cells by DAPI stain
- Cytology smears, cytospins, LBC have whole nuclei and therefore no truncation artifact as seen with FFPE sections

Biomarker Testing by IHC in Cytology

Actionable Biomarker Testing by IHC

• It is becoming increasingly common for actionable biomarker testing by IHC (e.g. ALK, ROS1, BRAF V600E, PD-L1, MSI) emphasizing the need for appropriate validation

Principles of Analytic Validation of Immunohistochemical Assays

Guideline From the College of American Pathologists Pathology and Laboratory Quality Center

Patrick L. Fitzgibbons, MD; Linda A. Bradley, PhD; Lisa A. Fatheree, BS, SCT(ASCP); Randa Alsabeh, MD; Regan S. Fulton, MD, PhD; Jeffrey D. Goldsmith, MD; Thomas S. Haas, DO; Rouzan G. Karabakhtsian, MD, PhD; Patti A. Loykasek, HT(ASCP); Monna J. Marolt, MD; Steven S. Shen, MD, PhD; Anthony T. Smith, MLS; Paul E. Swanson, MD

Arch Pathol Lab Med. 2014 Nov;138(11):1432-43. doi: 10.5858/arpa.2013-0610-CP.

Actionable Biomarker Testing by IHC

REVIEW ARTICLE

Principles of Analytic Validation of Clinical Immunohistochemistry Assays

Jeffrey D. Goldsmith, MD,* Patrick L. Fitzgibbons, MD,† and Paul E. Swanson, MD‡

Similarly, if IHC is run on cytologic preparations, including smears, cytospins, cell blocks, and ThinPrep preparations (or core samples submitted with aspirate fluid or other preparation to the cytology laboratory in CytoLyt or other nonformalin solutions), reasonable efforts should be made to assure that these assays perform adequately before they are used on patient samples. The selection of markers tested and number of cases included in these

separate validation studies must be determined by the laboratory medical director.

Biomarker Testing by IHC in Cytology May Require Optimization

- Methanol-based fixation can decrease IHC accuracy by loss or decrease of immunogenicity when formalin-optimized protocols are used
- Some studies report post-fixation of alcohol-fixed specimens in formalin may restore immunogenicity
- Therefore, rigorous validation and protocol optimization are critical for immunostaining cytologic specimens

Reference:

Sauter JL et al., Cancer Cytopathol. 2016 Feb;124(2):89-100. Kinsella MD et al. Diagn Cytopathol. 2013 Mar;41(3):192-8. Jain D et al. Cancer Cytopathol. 2019 May;127(5):325-339.

Which Cytology Specimen Requires Additional Validation?

- Cytology direct smear
- FFPE cell blocks of effusion specimens sitting in fridge O/N
- Cellient cell block
- FFPE cell block of FNA collected in RPMI/ CytoLyt/ saline/ ethanol

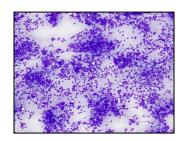
Molecular Cytopathology: Integrating Cytology and Molecular

Three Cardinal Rules of Molecular Cytopathology

Sinchita's Rule of Three

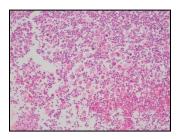
- Know your test
- Know your specimen
- Know the clinical relevance

Three Cardinal Rules of Molecular Cytopathology


Know your test

120 130 GAT AAAT CT G G T C T T AT T T C C		9 19		AAA AA AA		
---	--	------	--	-----------	--	--

Molecular assay


- Assay design, capabilities, limitations
- Analytical versus clinical sensitivity

Know your specimen

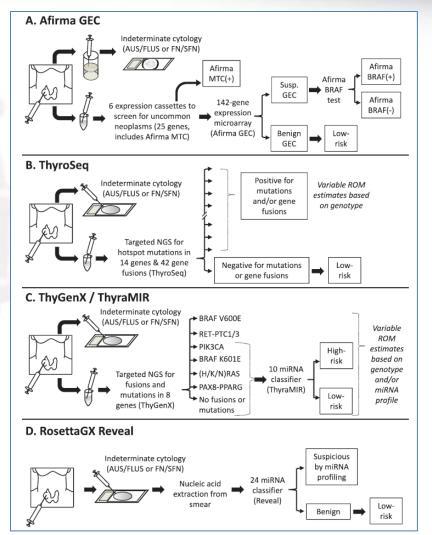
Specimen adequacy

- Selecting the best specimen for testing
- Modulating the specimen for the assay

Know the clinical relevance

Correlation

- Recognizing false negative/positive
- Clinical significance of the findings


Harnessing the Power of Molecular Cytopathology

Molecular Testing in Thyroid Cytology

- FNA preferred sampling modality
- Non-diagnostic/indeterminate rates are relatively high

The Deth	anda Cuntana		Diagnostic Category	ROM ¹ (NIFTP ² Considered as Cancer (%))	ROM ¹ (NIFTP ² NOT Considered as Cancer (%))	Management Options
for Repo	esda System rting Thyroid	I.	Nondiagnostic/unsatisfactory (Cyst fluid, acellular specimen, other (e.g., obscuring blood, artefacts))	5–10	5–10	Correlate with clinical/radiological findings Consider repeat FNA 3
Cytopath	pathology	П.	Benign (Benign follicular nodule, Chronic lymphocytic (Hashimoto) thyroiditis, Granulomatous (subacute) thyroiditis)	0–3	0–3	Surveillance and US 4 follow up
0.9	Definitions, Criteria, and Explanatory Notes Second Edition		Atypia of undetermined significance, <i>or</i> follicular lesion of undetermined significance	6–18	10–30	Correlate with clinical/radiological findings Consider repeat FNA ³ Consider molecular testing
			Follicular neoplasm OR Follicular carcinoma (specify if Hürtle cell features)	10-40	25–40	Consider molecular testing, Lobectomy
	Syed Z. Ali	V.	Suspicious for malignancy	45-60	50–75	Total thyroidectomy or lobectomy
	Edmund S. Cibas <i>Editors</i> <u> Spring</u> er	VI.	Malignant (Papillary thyroid carcinoma, Poorly differentiated thyroid carcinoma, Medullary thyroid carcinoma, Anaplastic thyroid carcinoma, Squamous cell carcinoma, Carcinoma with mixed features, Metastatic malignancy, Non-Hodgkin lymphoma, Other)	94–96	97–99	Total thyroidectomy or lobectomy

Molecular Testing in Thyroid Cytology

Molecular Analysis of Residual ThinPrep Material From Thyroid FNAs Increases Diagnostic Sensitivity

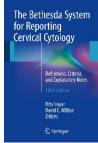
Jeffrey F. Krane, MD, PhD¹ Edmund S. Cibas, MD¹ Erik K. Alexander, MD² Ralf Paschke, MD³ and Markus Eszlinger, PhD³

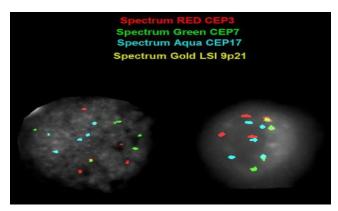
Molecular Diagnosis Using Residual Liquid-Based Cytology Materials for Patients with Nondiagnostic or Indeterminate Thyroid Nodules

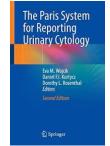
Hyemi Kwon¹, Won Gu Kim¹, Markus Eszlinger², Ralf Paschke², Dong Eun Song³, Mijin Kim¹, Suyeon Park¹, Min Ji Jeon¹, Tae Yong Kim¹, Young Kee Shong¹, Won Bae Kim¹

Next-Generation Sequencing Identifies Gene Mutations That Are Predictive of Malignancy in Residual Needle Rinses Collected From Fine-Needle Aspirations of Thyroid Nodules

Maren Y. Fuller, MD; Dina Mody, MD; April Hull, CT(ASCP); Kristi Pepper, MT(ASCP); Heather Hendrickson, MT(ASCP); Randall Olsen, MD, PhD


Not Malignant


The Power of Molecular Cytopathology


Genomic alterations without a malignant diagnosis

• Atypia: e.g. Gyn cytology, urine cytology

Category	Risk of malignancy, %	Management
Unsatisfactory/nondiagnostic	<5-10	repeat cytology, cystoscopy in 3 months if increased clinical suspicion
Negative for high-grade urothelial carcinoma	0-10	clinical follow-up as needed
Atypical urothelial cells	8-35	clinical follow-up as needed potential use of ancillary testing
Suspicious for high-grade urothelial carcinoma	50-90	more aggressive follow-up, cystoscopy, biopsy
Low-grade urothelial neoplasm	~10	need cystoscopy and biopsy to further evaluate grade and stage
High-grade urothelial carcinoma	>90	more aggressive follow-up, cystoscopy, biopsy, staging
Other malignancy	>90	more aggressive follow-up, cystoscopy, biopsy, staging

The Power of Molecular Cytopathology

Genomic alterations without a malignant diagnosis

• Negative for malignancy: pancreatic cyst fluid

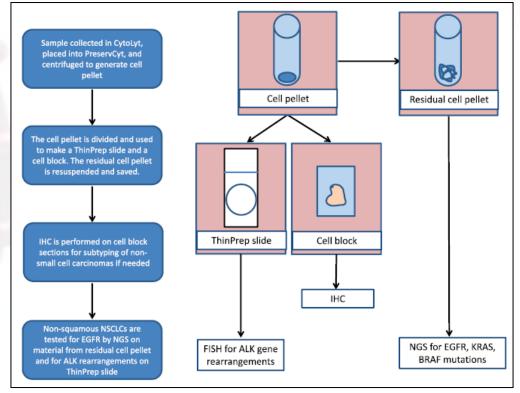
ORIGINAL ARTICLE

Preoperative next-generation sequencing of pancreatic cyst fluid is highly accurate in cyst classification and detection of advanced neoplasia

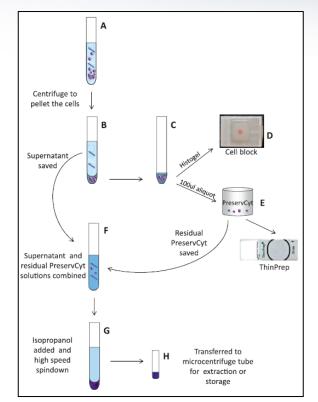
Aatur D Singhi,¹ Kevin McGrath,² Randall E Brand,² Asif Khalid,² Herbert J Zeh,³ Jennifer S Chennat,² Kenneth E Fasanella,² Georgios I Papachristou,² Adam Slivka,² David L Bartlett,³ Anil K Dasyam,⁴ Melissa Hogg,³ Kenneth K Lee,³ James Wallis Marsh,³ Sara E Monaco,¹ N Paul Ohori,¹ James F Pingpank,³ Allan Tsung,³ Amer H Zureikat,³ Abigail I Wald,¹ Marina N Nikiforova¹

Table 1 Key genetic mutations and/or deletions in pancreatic cysts										
Pancreatic Cyst Type	KRAS	GNAS	RNF43	VHL	CTNNB1	TP53	РІКЗСА	PTEN	CDKN2A	SMAD4
Intraductal papillary mucinous neoplasm	+	+	+	-	-	+ª	+ ^a	+ ^a	+ ^a	+ ^a
Mucinous cystic neoplasm	+	_	_	_	_	+ª	+ ^a	+ ^a	+ ^a	+ ^a
Serous cystadenoma	_	_	_	+	_	_	_	_	_	_
Solid-pseudopapillary neoplasm	-	-	-	-	+	+ ^b	+ ^b	-	-	-
Non-neoplastic cysts	-	-	_	_	_	_	-	_	-	-

^a Alterations in these genes are associated with advanced neoplasia.

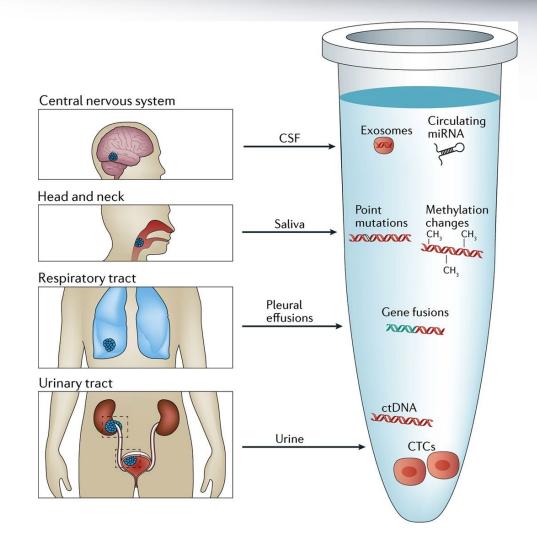

^b Although mutations in these genes have been described, they are rare findings.

+, presence; –, absence.

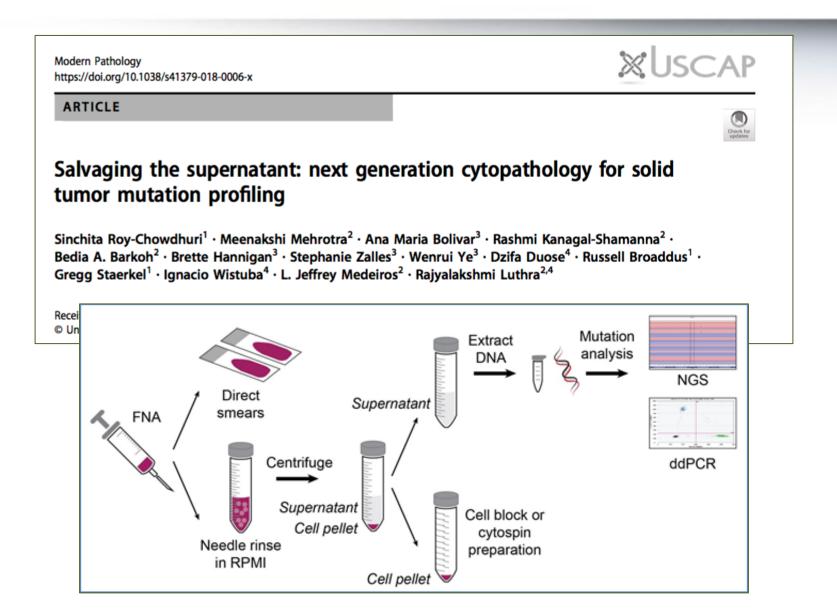

References:

Singhi AD, McGrath K et al. Gut. 2018 Dec;67(12):2131-2141. Theisen BK et al. Surg Pathol Clin. 2016 Sep;9(3):441-56. doi: 10.1016/j.path.2016.04.008

Utilizing Residual Liquid-Based Samples



Doxtader EE et al. Arch Pathol Lab Med. 2019 Jun;143(6):670-676.


Tian SK et al. Arch Pathol Lab Med. 2016 Nov;140(11):1200-1205.

Cytology Specimens May Serve as a Liquid Biopsy Testing Option

Nature Reviews | Clinical Oncology Siravegna, G. et al. Nat. Rev. Clin. Oncol. doi:10.1038/nrclinonc.2017.14

Next Generation Molecular Cytopathology

Next Generation Molecular Cytopathology

Liquid biopsy assay for lung carcinoma using centrifuged supernatants from fine-needle aspiration specimens

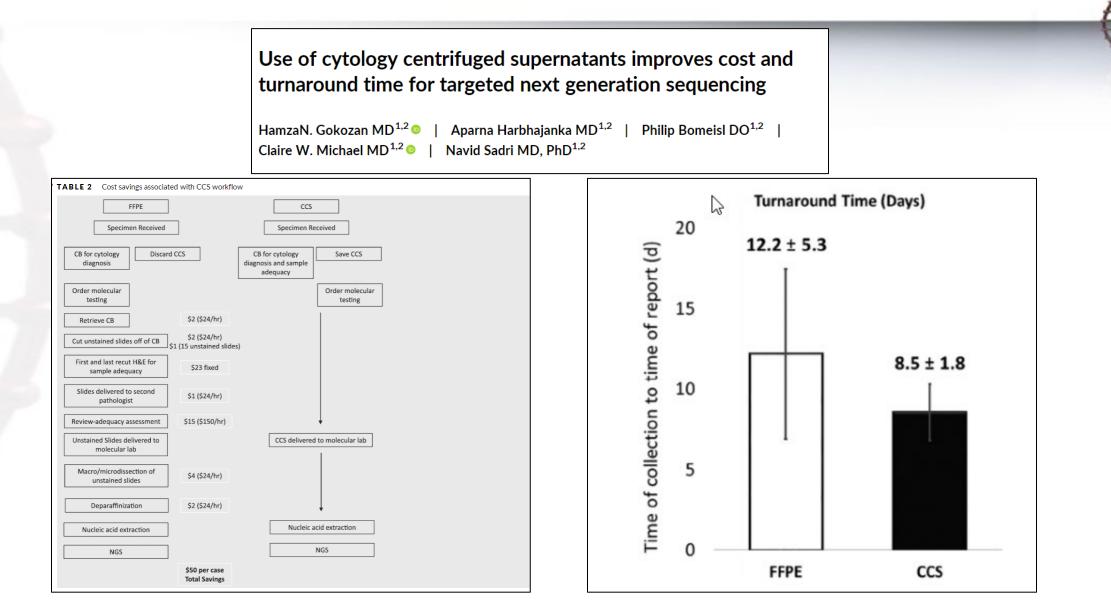
B. Hannigan¹⁺, W. Ye¹⁺, M. Mehrotra², V. Lam³, A. Bolivar¹, S. Zalles¹, B. A. Barkoh², D. Duose⁴, P. C. Hu¹, R. Broaddus⁵, J. Stewart⁵, J. Heymach³, L. J. Medeiros², I. Wistuba⁴, R. Luthra² & S. Roy-Chowdhuri^{5*}

Liquid biopsy of fine-needle aspiration supernatant for lung cancer genotyping

Nicolas Guibert^{a,b}, Hisashi Tsukada^c, David H. Hwang^d, Emily Chambers^b, Edmund S. Cibas^d, Tejus Bale^d, Julianna Supplee^a, Bryan Ulrich^a, Lynette M. Sholl^d, Cloud P. Paweletz^a, Geoffrey R. Oxnard^{b,*}

Rapid point-of-care testing for epidermal growth factor receptor gene mutations in patients with lung cancer using cell-free DNA from cytology specimen supernatants

SHIHO ASAKA^{1,2}, AKIHIKO YOSHIZAWA^{1,3}, KAZUSA SAITO⁴, YUKIHIRO KOBAYASHI^{1,2}, HIROSHI YAMAMOTO⁵, TATSUYA NEGISHI¹, RIE NAKATA^{1,2}, KAZUYUKI MATSUDA¹, AKEMI YAMAGUCHI⁶ and TAKAYUKI HONDA¹


Centrifuged Supernatants from FNA Provide a Liquid Biopsy Option for Clinical Next-Generation Sequencing of Thyroid Nodules

Wenrui Ye, PhD¹; Brette Hannigan, MS¹; Stephanie Zalles, MS¹; Meenakshi Mehrotra, PhD²; Bedia A. Barkoh²; Michelle D. Williams, MD³; Maria E. Cabanillas, MD⁴; Beth Edeiken-Monroe, MD⁵; Peter Hu, PhD¹; Dzifa Duose, PhD⁶; Ignacio I. Wistuba, MD⁶; L. Jeffrey Medeiros, MD²; John Stewart, MD, PhD³; Rajyalakshmi Luthra, PhD²; and Sinchita Roy-Chowdhuri, MD, PhD

Comparison of Cytocentrifugation Supernatant Fluid and Formalin-Fixed Paraffin-Embedded Tissue for Targeted Next-Generation Sequencing

Nafiseh Janaki, MD ^{1,2}; Aparna Harbhajanka, MD^{1,2}; Claire W. Michael, MD^{1,2}; Phillip Bomeisl, DO^{1,2}; Jay Wasman, MD^{1,2}; Maureen Atchley, BS¹; Kristina Miskiewicz, BS¹; David Alouani, PhD^{1,2}; and Navid Sadri, MD, PhD ^{1,2}

Less is More. Less is Faster and Cheaper

Molecular Cytopathology Summary

Cytology is an Underutilized Goldmine of Genomic Data

- Lack of awareness regarding utility of cytology specimens for molecular testing
- Lack of standardization across cytology laboratories for specimen processing
- Reluctance of molecular labs to validate a variety of cytologic specimen preparations
- Overall reluctance of cytopathologists to sacrifice irreplaceable cytologic smears from the diagnostic archives

The Pathologist Plays a Key Role in the Success of Molecular Testing

- The pathologist plays a key role in specimen handling that can improve the success of molecular diagnostics
- Be the bridge between the clinical team and the molecular lab
 - 1. Know your test
 - Modulate the platform for the specimen (high analytic sensitivity)
 - 2. Know your specimen
 - Modulate the specimen for the platform (tumor enrichment)
 - 3. Know your clinical team
 - Prioritize testing to answer clinically relevant questions

4. Know the limitations

- Be prepared to make molecular cytopathologic correlations

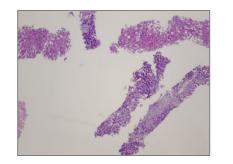
The Pathologist Plays a Key Role in the Success of Molecular Testing

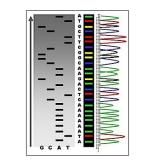
Why does this matter?

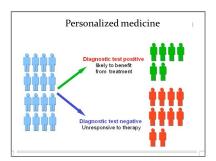
• Rendering an **accurate diagnosis**: sampling, accessioning, processing, interpretation

Team work is critical for patient care

- Molecular testing and reporting also relies on teamwork
- Molecular test results are key determinants for therapeutic decisions and patient outcome


Pathologists Need to be "Integrative Diagnosticians"





Greg Fuller, MD PhD

Pathologists are the gatekeepers for ensuring the patient is matched to the appropriate treatment

Thank You

Questions?

Making Cancer History®